Section 4.4: Parabolas

Objective: Graph parabolas using the vertex, *x*-intercepts, and *y*-intercept.

Just as the graph of a linear equation y = mx + b can be drawn, the graph of a quadratic equation $y = ax^2 + bx + c$ can be drawn. The graph is simply a picture showing what pairs of values x and y can be used to make the equation true. For a linear equation, the graph is a line but for a quadratic equation, the graph is a U shaped curve called a **parabola**.

GRAPHING A PARABOLA BY CREATING A TABLE OF VALUES

One way to draw the graph of a quadratic equation is to make a table of values and evaluate the equation for each x-value we choose. The completed table gives us a set of points to graph. Remember that points are ordered pairs in the form of (x, y); so, each x-value and its corresponding y-value are a point to be graphed.

Example 1. Graph the parabola $y = x^2 - 4x + 3$.

Make a table of values. We will test five *x*-values to get an idea of the shape of the graph:

$$y = x^2 - 4x + 3$$

X	У
0	
1	
2	
3	
4	

Plug 0 in for x and evaluate: $y = (0)^2 + 4(0) + 3 = 0 - 0 + 3 = 3$ Plug 1 in for x and evaluate: $y = (1)^2 - 4(1) + 3 = 1 - 4 + 3 = 0$ Plug 2 in for x and evaluate: $y = (2)^2 - 4(2) + 3 = 4 - 8 + 3 = -1$ Plug 3 in for x and evaluate: $y = (3)^2 - 4(3) + 3 = 9 - 12 + 3 = 0$ Plug 4 in for x and evaluate: $y = (4)^2 - 4(4) + 3 = 16 - 16 + 3 = 3$ The completed table is shown below:

$$y = x^2 - 4x + 3$$

X	У
0	3
1	0
2	-1
3	0
4	3

Graph by plotting the points (0,3), (1,0), (2,-1), (3,0) and (4,3). Connect the points with a smooth, U shaped curve.

The above method to graph a parabola works for any quadratic equation; however, it can be very tedious to find all the points that would be necessary to get the correct bend and shape. For this reason, we identify several key points on a graph to help us graph parabolas more efficiently. These key points are described below.

y -intercept (Point A): where the graph crosses the vertical y -axis.

x **-intercepts** (Points B and C): where the graph crosses the horizontal *x* -axis.

Vertex (Point D): the turning point where the graph changes directions.

GRAPHING A PARABOLA USING THE VERTEX, X-INTERCEPTS, AND Y-INTERCEPT

We will use the following method to find each of the points on our parabola.

To graph the parabola $y = ax^2 + bx + c$:

- 1. **Find the** *y* **-intercept:** Find the *y* -intercept by evaluating when x = 0; this always simplifies to y = c.
- 2. Find the x-intercepts: Find any x-intercepts by setting y = 0 and solving the equation $0 = ax^2 + bx + c$.

If the solutions are real numbers, there are two x-intercepts. It is also possible to have only one x-intercept or no x-intercepts (if the solutions are complex numbers).

- 3. **Find the vertex:** Let $x = \frac{-b}{2a}$ to find the *x*-coordinate of the vertex. Then plug this *x*-value into the equation to find its corresponding *y*-value, which is the *y*-coordinate of the vertex.
- 4. **Determine whether the parabola opens upward or downward:**If *a* is a *positive* number, then the vertex will be the *minimum* point of the parabola and the graph will open *upward* (U-shaped).

 If *a* is a *negative* number, then the vertex will be the *maximum* point of the parabola and the graph will open *downward* (upside down U-shaped).
- 5. Plot the points and connect with a smooth U-shaped curve.

Example 2. Graph the parabola

$$y = x^2 + 4x + 3$$
 Find the key points
$$y = 3$$
 y-intercept is $y = c$, point $(0,3)$

$$0 = x^2 + 4x + 3$$
 To find the x-intercepts, we solve the equation
$$0 = (x+3)(x+1)$$
 Factor completely
$$x+3 = 0 \text{ or } x+1 = 0$$
 Set each factor equal to zero
$$\frac{-3 = -3}{x = -3} \text{ or } \frac{-1 = -1}{x = -1}$$
 Solve each equation
$$0 = (x+3)(x+1)$$
 Our x-intercepts, points $(-3,0)$ and $(-1,0)$

$$x = \frac{-4}{2(1)} = \frac{-4}{2} = -2$$
 To find the vertex, first use $x = \frac{-b}{2a}$

$$y = (-2)^2 + 4(-2) + 3$$
 Plug this value into the equation to find the y-coordinate
$$y = 4 - 8 + 3$$
 Evaluate
$$y = -1$$
 y-value of vertex
$$(-2, -1)$$
 Vertex as a point

CHAPTER 4

Graph points (0,3), (-3,0), and (-1,0), as well as the vertex at (-2,-1).

Connect the dots with a smooth curve in a U shape to get our parabola.

Our Graph

If the leading coefficient a in $y = ax^2 + bx + c$ is *negative*, the parabola will end up having an upside-down U shape. The process to graph it is identical, we just need to be very careful of how our signs operate. Remember, if a is negative, then ax^2 will also be negative because we only square the x, not the a.

Example 3. Graph the parabola

$$y = -3x^2 + 12x - 9$$
 Find the key points
$$y = -9$$
 y-intercept is $y = c$, point $(0, -9)$

$$0 = -3x^2 + 12x - 9$$
 To find the x-intercepts, this equation
$$0 = -3(x^2 - 4x + 3)$$
 Factor out GCF first, then factor rest
$$0 = -3(x - 3)(x - 1)$$
 Set each factor with a variable equal to zero
$$x - 3 = 0$$
 or $x - 1 = 0$ Solve each equation
$$\frac{+3 = +3}{x = 3} \frac{+1 = +1}{\text{or}} = -12$$

$$x = \frac{-12}{2(-3)} = \frac{-12}{-6} = 2$$
 To find the vertex, first use $x = \frac{-b}{2a}$

$$y = -3(2)^2 + 12(2) - 9$$
 Plug this value into the equation to find the y-coordinate
$$y = -3(4) + 24 - 9$$
 Evaluate
$$y = 3$$
 y-value of vertex
$$(2,3)$$
 Vertex as a point

CHAPTER 4 Section 4.4: Parabolas

Graph the points (0,-9), (3,0), and (1,0), as well as the vertex at (2,3).

Connect the dots with a smooth curve in an upside-down U shape to get our parabola.

Our Graph

It is important to remember the graph of all quadratics is a parabola with the same U shape (either opening up or opening down). If you plot your points and they cannot be connected in the correct U shape, then at least one of your points must be wrong. Go back and check your work!

Whenever you have a perfect square trinomial quadratic equation, you will have only one unique *x*-intercept, and that *x*-intercept will also be the vertex of the parabola.

Example 4. Graph the parabola

$$y = -x^2 - 6x - 9$$
 Find the key points
$$y = -9$$
 y-intercept is $y = c$, point $(0, -9)$

$$0 = -x^2 - 6x - 9$$
 To find the x-intercept in this equation,
$$0 = -1(x^2 + 6x + 9)$$
 Factor out GCF first, then factor the trinomial
$$0 = -1(x + 3)(x + 3)$$
 Set each factor with a variable equal to zero
$$x + 3 = 0$$
 or $x + 3 = 0$ Solve each equation
$$\frac{-3 = -3}{x = -3}$$
 or
$$\frac{-3 = -3}{x = -3}$$
 Since they are the same value, the x-intercept is $(-3,0)$

$$x = -\frac{-6}{2(-1)} = -\frac{-6}{-2} = -3$$
 To find the vertex, first use $x = \frac{-b}{2a}$

$$y = -(-3)^2 - 6(-3) - 9$$
 Plug this value into the equation to find the y-coordinate
$$y = -(9) + 18 - 9$$
 Ye y-value of vertex
$$(-3,0)$$
 Vertex as a point

Notice that the x-intercept and the vertex are the same point (-3,0). This occurs whenever you have a perfect square trinomial as your quadratic equation. This is because whenever you factor a perfect square trinomial, both factors are identical. By setting each factor equal to zero there is only one unique solution.

Graph the y-intercept (0,-9) and the vertex (-3,0).

Connect the dots with a smooth curve in an upside-down U shape to get our parabola.

Our Graph

It is important to remember the graphs of all quadratics are parabolas with the same basic U shape. The differences come from the vertex being shifted to a different location, the curve opening up or down, and how quickly the curve opens.

Practice Exercises Section 4.4: Parabolas

Find the vertex and intercepts. Use this information to graph each parabola.

1)
$$y = x^2 - 2x - 8$$

2)
$$y = x^2 - 2x - 3$$

3)
$$y = 2x^2 - 12x + 10$$

4)
$$y = 2x^2 - 12x + 16$$

5)
$$y = -2x^2 + 12x - 18$$

6)
$$y = -2x^2 + 12x - 10$$

7)
$$y = -3x^2 + 24x - 45$$

8)
$$y = -3x^2 + 12x - 9$$

9)
$$y = -x^2 + 4x + 5$$

10)
$$y = -x^2 + 4x - 3$$

11)
$$y = -x^2 + 6x - 5$$

12)
$$y = -2x^2 + 16x - 30$$

13)
$$v = -2x^2 + 16x - 24$$

14)
$$y = 2x^2 + 4x - 6$$

15)
$$y = 3x^2 + 12x + 9$$

16)
$$y = 5x^2 + 30x + 45$$

17)
$$y = 5x^2 - 40x + 75$$

18)
$$y = 5x^2 + 20x + 15$$

19)
$$y = -5x^2 - 60x - 175$$

20)
$$y = -5x^2 + 20x - 15$$

21)
$$y = 3x^2 - 6x + 1$$

22)
$$y = 9x^2 - 18x + 4$$

23)
$$y = -6x^2 - 18x - 11$$

24)
$$y = x^2 - 4x + 5$$

25)
$$y = -3x^2 + 6x - 5$$

26)
$$y = x^2 + 6x + 10$$

27)
$$y = x^2 + 8x + 16$$

28)
$$y = -x^2 + 10x - 25$$

ANSWERS to Practice Exercises Section 4.4: Parabolas

The Answers to Practice Exercises are continued on the next page.

ANSWERS to Practice Exercises: Section 4.4 (continued)

The Answers to Practice Exercises are continued on the next page.

ANSWERS to Practice Exercises: Section 4.4 (continued)

