
A Problem Solving Approach to Mathematics for Elementary School Teachers

Thirteenth Edition

Chapter 3
Numeration
Systems and
Whole Number
Operations

Section 3-1 Numeration Systems

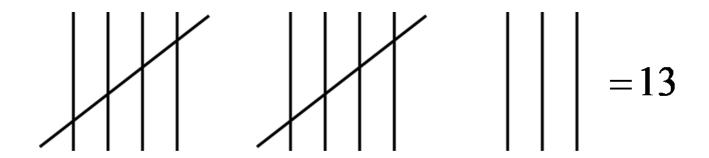
Students will be able to understand and explain

- Numbers, their origin, and their representation in numerals and models.
- Different numeration systems including the Hindu-Arabic system.
- Place value and counting in base ten and other bases.

Definition (1 of 2)

Numerals: written symbols to represent cardinal numbers.

Babylonian		•	**	***	***	**	***	***	****	****	<
Egyptian		1	IJ	111	HH)(I		1111	1111 1111	111 111 771	^
Mayan	4	•	••	•••	••••		•	••	•••	••••	
Greek		α	β	γ	δ	€	ф	ζ	η	υ	ι
Roman		I	П	III	IV	V	VI	VII	VIII	IX	Х
Hindu	0	1	7	>	*	9	6	٨	8	9	
Arabic	•	1	7	•	Ł	Þ	1	*	٨	4	
Hindu-Arabic	0	1	2	3	4	5	6	7	8	9	10


Definition (2 of 2)

Numeration system: a collection of properties and symbols agreed upon to represent numbers systematically.

Tally Numeration System

Uses single strokes (tally marks) to represent each object that is counted.

Egyptian Numeration System

Egyptian Numeral	Description	Hindu-Arabic Equivalent		
1	Vertical Staff	1		
Λ	Heel bone	10		
9	Scroll	100		
Ł	Lotus flower	1,000		
0	Pointing finger	10,000		
	Polliwog or burbot	100,000		
***************************************	Astonished man	1,000,000		

Babylonian Numeration System

Babylonian Numeral	Hindu-Arabic Equivalent		
V	1		
<	10		

Mayan Numeration System

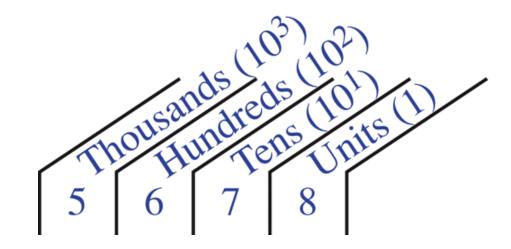
Mayan Numeral	Hindu-Arabic Equivalent
•	1
	5
	0

Roman Numeration System (1 of 2)

Roman Numeral	Hindu-Arabic Equivalent
I	1
V	5
X	10
L	50
С	100
D	500
М	1000

Roman Numeration System (2 of 2)

Roman Numeral	Hindu-Arabic Equivalent		
IV	5 – 1, or 4		
IX	10 – 1, or 9		
XL	50 – 10, or 40		
XC	100 – 10, or 90		
CD	500 – 100, or 400		
СМ	1000 – 100, or 900		


Hindu-Arabic Numeration System

- 1. All numerals are constructed from the 10 digits—0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
- 2. Place value is based on powers of 10, the *number base* of the system.

Place Value

Place value assigns a value to a digit depending on its placement in a numeral.

Expanded form

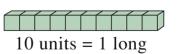
$$6789 = 6 \times 10^3 + 7 \times 10^2 + 8 \times 10^1 + 9 \times 1$$

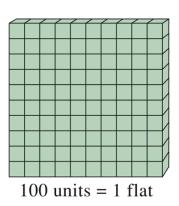
Definition of aⁿ

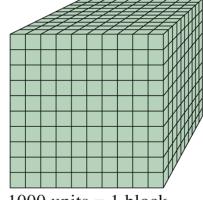
If a is any number and n is any natural number, then

$$a^n = \overbrace{a \cdot a \cdot a \cdot \ldots \cdot a}^n$$

If $a \neq 0$, then $a^0 = 1$.


Base-Ten Blocks


 $1 \log \rightarrow 10^1 = 1 \text{ row of } 10 \text{ units}$


1 flat $\rightarrow 10^2 = 1$ row of 10 longs, or 100 units

1 block \rightarrow 10³ = 1 row of 10 flats, or 100 longs, or 1000 units

1000 units = 1 block

Example 1 (1 of 3)

What is the fewest number of pieces you can receive in a fair exchange for 11 flats, 17 longs, and 16 units?

```
11 flats 17 longs 16 units (16 units = 1 long
11 ong 6 units and 6 units)
11 flats 18 longs 6 units (after the first trade)
```


Example 1 (2 of 3)

```
11flats 18longs 6units (18longs = 1flat

1flat 8longs and 8 longs)

12flats 8longs 6units (after the second trade)
```


Example 1 (3 of 3)

(12 flats = 1 block and 2 flats)

12 flats 8 longs 6 units

1block 2 flats

1block 8 flats 8 longs 6 units

As a result of the trading, we obtain 1 block 2 flats, 8 longs, and 6 units. This trade yields the fewest number of pieces, 1 + 2 + 8 + 6 = 17.

Other Number Base Systems

Quinary (basefive) system

One-Hand System	Base-Five Symbol	Base-Five Blocks
0 fingers	$0_{ m five}$	
1 finger	1_{five}	
2 fingers	$2_{\rm five}$	99
3 fingers	$3_{\rm five}$	999
4 fingers	$4_{\rm five}$	9999
1 hand and 0 fingers	10_{five}	
1 hand and 1 finger	11_{five}	
1 hand and 2 fingers	12 _{five}	
1 hand and 3 fingers	$13_{\rm five}$	
1 hand and 4 fingers	$14_{\rm five}$	
2 hands and 0 fingers	20_{five}	
2 hands and 1 finger	$21_{\rm five}$	

Example 3

Convert 11244_{five} to base 10.

$5^4 = 625$	$5^3 = 125$	$5^2 = 25$	$5^1 = 5$	$5^0 = 1$
1	1	2	4	4

$$11244_{5} = 1 \cdot 5^{4} + 1 \cdot 5^{3} + 2 \cdot 5^{2} + 4 \cdot 5^{1} + 4 \cdot 1$$

$$= 1 \cdot 625 + 1 \cdot 125 + 2 \cdot 25 + 4 \cdot 5 + 4 \cdot 1$$

$$= 625 + 125 + 50 + 20 + 4$$

$$= 824$$

Base Two

Binary system – only two digits

Base two is especially important because of its use in computers.

One of the two digits is represented by the presence of an electrical signal and the other by the absence of an electrical signal.

Example 4a

Convert 101111_{two} to base ten.

$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	$2^0 = 1$
1	0	1	1	1

$$10111_{2} = 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1$$
$$= 16 + 0 + 4 + 2 + 1$$
$$= 23$$

Example 4b

Convert 27 to base two.

$$\begin{array}{c|c}
2 & 27 \\
2 & 13 \\
2 & 6 \\
\end{array}$$
or
$$2 & 3 \\
1 & 1 \\
\end{array}$$

$$27 = 11011_{\text{two}}$$

Base Twelve

Duodecimal system – twelve digits

Use *T* to represent a group of 10.

Use *E* to represent a group of 11.

The base-twelve digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *T*, and *E*.

Example 5a

Convert $E2T_{\text{twelve}}$ to base ten.

$$E2T_{12} = 11 \cdot 12^{2} + 2 \cdot 12^{1} + 10 \cdot 1$$

$$= 11 \cdot 144 + 24 + 10$$

$$= 1584 + 24 + 10$$

$$= 1618$$

Example 5b

Convert 1277 to base twelve.

144 1277 8

-1152

12 125
$$T$$

-120

1 5 5

-5

0

Example 6

What is the value of g in $g36_{\text{twelve}} = 1050_{\text{ten}}$?

$$g \cdot 12^{2} + 3 \cdot 12^{1} + 6 \cdot 1 = 1050$$
$$144g + 36 + 6 = 1050$$
$$144g + 42 = 1050$$
$$144g = 1008$$
$$g = 7$$

