Explicit Functions

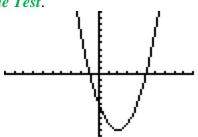
Most—if not all—of the equations relating one variable to another variable that you have examined in your mathematical career before today have been of the form y = f(x). Each *x*-coordinate is paired with exactly one *y*-coordinate. For such relations, *y* is said to be an *explicit function of x*.

Example of an Explicit Function: $5 + y - x^2 = -4x$

(*) *y* can be isolated. Write the *y*-isolated form of this equation:

(**) Formulaically, *y* equals a single formula involving *x*.

(***) Graphically, the graph passes the *Vertical Line Test*.



Implicit Functions

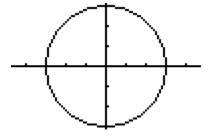
In the case of an implicit function, there is at least one *x*-coordinate (and possibly many more) that is paired with at least two different *y*-coordinates.

Example of an Implicit Function: $x^2 + y^2 = 9$

(*) You may or may not be able to isolate *y*. Try to isolate *y*:

(**) Formulaically, if you *can* isolate *y*, then *y* equals multiple formulas involving *x*.

(***) Graphically, the graph fails the *Vertical Line Test*. For the given example, graph $y = \sqrt{9 - x^2}$ and $y = -\sqrt{9 - x^2}$ together.



The Derivative of an Explicit Function

(*) The limit definition of the derivative is how we have already defined the derivative function of an explicit function.

(**) The derivative function of an explicit function is itself an explicit function.

(***) Determine the derivative of $y = x^2 - 4x - 5$: y' =

(****) This derivative function give a formula for (an explicit function of)

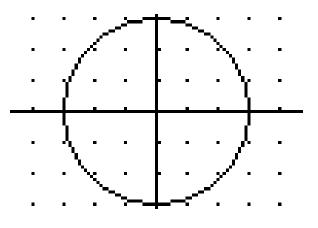
_____ to the graph of ______ at any *x*.

The Derivative of an Implicit Function

(*) We use a process called *Implicit Differentiation*, the main tool of which is the *Chain Rule*.

(**) The result is a formula (an implicit function) for the derivative $\frac{dy}{dx}$ (the slope of the tangent line). This formula may involve both x and y.

Exercise 1a: Consider the graph of $x^2 + y^2 = 9$. Estimate the slope of the tangent line at each of the points listed below.



(i)
$$(-1, \sqrt{8})$$
 (ii) $(-1, -\sqrt{8})$

(iv) (0,3)

<u>Question</u>: Why were the instructions for Exercise 1a **not** worded in the following way: "Estimate the slope of the tangent line at x = -1"?

<u>Answer</u>: This is an ambiguous request, for there is more than one point on the graph whose x-coordinate is -1. So, in order to specify a particular point (at which to draw a tangent line and estimate the slope there), we must also know the y-coordinate.

Implicit Differentiation Step-by-Step

Exercise 1b: Determine the derivative of $x^2 + y^2 = 9$ implicitly.

<u>Step 1</u> :	Rewrite the equation, replacing y with $y(x)$. This will help to remind you to use the <i>Chain Rule</i> .	\rightarrow
<u>Step 2</u> :	Take the derivative with respect to <i>x</i> . Use the <i>Chain Rule</i> (and other rules) as needed.	\rightarrow
<u>Step 3</u> :	Rewrite this equation with y in place of $y(x)$ and y' in place of $y'(x)$.	\rightarrow
<u>Step 4</u> :	Isolate y' , a notation equivalent to $\frac{dy}{dx}$.	\rightarrow

Exercise 1c: At what points is the derivative undefined? How does your answer correspond to the graph? (See page 2.)

Exercise 1d: Compute
$$\frac{d^2 y}{dx^2}$$
 at $(-1, \sqrt{8})$.

Exercise 3: For sin(xy) = x, determine $\frac{dy}{dx}$.

Exercise 4: Determine the equation of the line tangent to the graph of $y^2 = \frac{x^2}{xy + 20}$ at the point (4, 1). Mat

the point (-4, 1). *Make sure that you check that* (-4, 1) *is indeed a point on the graph of this implicit function.*

Logarithmic Differentiation

Occasionally, it is convenient to use properties of logarithms before taking the derivative of some functions.

Exercise 5: Determine the derivative of $y = \frac{(x-3)^4}{\sqrt{x^2+1}}$. First, note that y > 0 and, hence,

that ln(y) is defined.

Exercise 6: Determine the derivative of $y = \sqrt{(x-1)(x-2)(x-3)}$.